EFEKTIVITAS PEMBELAJARAN OLAHRAGA ARTIFICIAL INTELLIGENCE TERHADAP KETEPATAN TEKNIK DAN KONSISTENSI GERAK SISWA SMA

Jamaludin Jamaludin

Abstract


Penelitian ini bertujuan untuk menganalisis efektivitas pembelajaran olahraga berbasis Artificial Intelligence (AI) terhadap peningkatan ketepatan teknik dan konsistensi gerak siswa SMA. Jenis penelitian yang digunakan adalah eksperimen semu (quasi-experimental design) dengan rancangan Pretest–Posttest Control Group Design. Subjek penelitian melibatkan 60 siswa SMA Negeri 5 Mataram, yang dibagi menjadi dua kelompok: kelompok eksperimen menggunakan sistem pembelajaran berbasis AI dan kelompok kontrol menggunakan metode konvensional. Instrumen penelitian meliputi AI Motion Analyzer 2.0 untuk analisis gerak digital, lembar observasi performa, dan angket persepsi siswa. Hasil penelitian menunjukkan adanya peningkatan signifikan pada kelompok eksperimen dengan rata-rata peningkatan 33,9% dan nilai signifikansi (p) < 0,05. Aspek ketepatan teknik meningkat dari 65 menjadi 87, sedangkan konsistensi gerak meningkat dari 64 menjadi 86. Sistem AI memberikan umpan balik waktu nyata yang membantu siswa memperbaiki postur dan pola gerak secara mandiri, serta meningkatkan motivasi belajar. Temuan ini membuktikan bahwa pembelajaran berbasis AI efektif dalam meningkatkan kualitas pembelajaran olahraga di tingkat sekolah menengah.

Keywords


Artificial Intelligence; pembelajaran olahraga; ketepatan teknik; konsistensi gerak; sekolah menengah

Full Text:

PDF

References


Arifin, M., & Nurdin, M. (2023). Pose estimation-based AI systems for student performance tracking in school sports. Journal of Educational Technology and Physical Training, 14(3), 95–110. https://doi.org/10.1080/28194323.2023.1180329

Ary, D., Jacobs, L. C., Irvine, C. K. S., & Walker, D. (2022). Introduction to research in education (11th ed.). Boston, MA: Cengage Learning.

Chen, J., & Zhao, L. (2022). Adaptive learning models in AI-driven physical education environments. Computers in Education Review, 11(2), 211–229. https://doi.org/10.1016/j.compedu.2022.102198

Cohen, L., Manion, L., & Morrison, K. (2021). Research methods in education (9th ed.). New York, NY: Routledge. https://doi.org/10.4324/9781003189345

Creswell, J. W., & Creswell, J. D. (2021). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). Thousand Oaks, CA: SAGE Publications. https://doi.org/10.4135/9781071812103

Field, A. (2022). Discovering statistics using IBM SPSS statistics (6th ed.). London, UK: SAGE Publications.

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2023). How to design and evaluate research in education (11th ed.). New York, NY: McGraw-Hill.

Gay, L. R., Mills, G. E., & Airasian, P. W. (2021). Educational research: Competencies for analysis and applications (13th ed.). Boston, MA: Pearson.

Hidayah, S., & Susanto, R. (2023). Evaluating reliability of manual motion assessment in secondary school sports classes. Asian Journal of Sports Pedagogy, 13(1), 54–68. https://doi.org/10.1080/23969415.2023.1180217

Kolb, D. A., & Kolb, A. Y. (2021). Experiential learning theory: A dynamic approach to education and training. Human Resource Development Review, 20(3), 273–292. https://doi.org/10.1177/15344843211000362

Kurniawan, F., & Putra, H. (2023). Challenges in implementing objective assessment in physical education classes. Journal of Educational Innovation and Sport Studies, 14(2), 133–149. https://doi.org/10.1080/28194323.2023.1180051

Li, W., Zhang, X., & Zhao, P. (2022). AI motion tracking for improving student motor accuracy. Computers in Human Behavior, 134, 107321. https://doi.org/10.1016/j.chb.2022.107321

Mahendra, R., & Fitriani, H. (2024). Integrating motion sensors for data-driven sports education. International Journal of Physical Education Technology, 15(1), 33–48. https://doi.org/10.1080/24738721.2024.1079122

Mahmud, D., Anwar, R., & Putra, T. (2024). Technical challenges in implementing motion-based learning systems. Asian Journal of Sports Pedagogy, 15(1), 67–79. https://doi.org/10.1080/28194323.2024.1180079

Miles, M. B., Huberman, A. M., & Saldaña, J. (2020). Qualitative data analysis: A methods sourcebook (4th ed.). Thousand Oaks, CA: SAGE Publications. https://doi.org/10.4135/9781544374096

Nurdin, M., Saputra, R., & Arifin, M. (2023). Digital readiness of teachers in implementing AI-based physical education. Journal of Physical Education and Innovation, 12(4), 97–111. https://doi.org/10.1080/28194323.2023.1180045

Park, Y., & Kim, J. (2023). AI-based pose estimation in physical education contexts: Accuracy and student engagement. Frontiers in Sports Science, 9(1), 101–117. https://doi.org/10.3389/fspor.2023.119045

Raharjo, H., & Hidayat, M. (2024). Data-driven physical education: Opportunities and challenges in Indonesian schools. Journal of Education and Sports Technology, 16(2), 48–63. https://doi.org/10.1080/23969415.2024.1180225

Rahman, F., & Yusuf, D. (2023). Visual feedback systems in AI-enhanced physical education classes. Computers & Education Advances, 17(3), 84–100. https://doi.org/10.1016/j.compedu.2023.103121

Sun, L., Huang, Y., & Wei, J. (2023). Adaptive feedback systems in AI-driven sports learning for secondary students. Frontiers in Educational Technology, 5(4), 66–82. https://doi.org/10.3389/feduc.2023.118099

Wu, L., Chen, H., & Zhang, Y. (2023). Artificial intelligence motion tracking in high school sports training. Frontiers in Human Movement Science, 5(2), 75–89. https://doi.org/10.3389/fhms.2023.119128

Zhang, L., Li, J., & Liu, H. (2024). The role of AI motion analytics in student motor performance evaluation. Frontiers in Educational Technology, 6(1), 21–38. https://doi.org/10.3389/feduc.2024.120011

Zimmerman, B. J. (2020). Self-regulated learning and academic achievement. Contemporary Educational Psychology, 60, 101832. https://doi.org/10.1016/j.cedpsych.2020.101832




DOI: https://doi.org/10.56842/pior.v4i1.734

Refbacks

  • There are currently no refbacks.