EFEKTIVITAS PEMBELAJARAN OLAHRAGA ARTIFICIAL INTELLIGENCE TERHADAP KETEPATAN TEKNIK DAN KONSISTENSI GERAK SISWA SMA
Abstract
Keywords
Full Text:
PDFReferences
Arifin, M., & Nurdin, M. (2023). Pose estimation-based AI systems for student performance tracking in school sports. Journal of Educational Technology and Physical Training, 14(3), 95–110. https://doi.org/10.1080/28194323.2023.1180329
Ary, D., Jacobs, L. C., Irvine, C. K. S., & Walker, D. (2022). Introduction to research in education (11th ed.). Boston, MA: Cengage Learning.
Chen, J., & Zhao, L. (2022). Adaptive learning models in AI-driven physical education environments. Computers in Education Review, 11(2), 211–229. https://doi.org/10.1016/j.compedu.2022.102198
Cohen, L., Manion, L., & Morrison, K. (2021). Research methods in education (9th ed.). New York, NY: Routledge. https://doi.org/10.4324/9781003189345
Creswell, J. W., & Creswell, J. D. (2021). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). Thousand Oaks, CA: SAGE Publications. https://doi.org/10.4135/9781071812103
Field, A. (2022). Discovering statistics using IBM SPSS statistics (6th ed.). London, UK: SAGE Publications.
Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2023). How to design and evaluate research in education (11th ed.). New York, NY: McGraw-Hill.
Gay, L. R., Mills, G. E., & Airasian, P. W. (2021). Educational research: Competencies for analysis and applications (13th ed.). Boston, MA: Pearson.
Hidayah, S., & Susanto, R. (2023). Evaluating reliability of manual motion assessment in secondary school sports classes. Asian Journal of Sports Pedagogy, 13(1), 54–68. https://doi.org/10.1080/23969415.2023.1180217
Kolb, D. A., & Kolb, A. Y. (2021). Experiential learning theory: A dynamic approach to education and training. Human Resource Development Review, 20(3), 273–292. https://doi.org/10.1177/15344843211000362
Kurniawan, F., & Putra, H. (2023). Challenges in implementing objective assessment in physical education classes. Journal of Educational Innovation and Sport Studies, 14(2), 133–149. https://doi.org/10.1080/28194323.2023.1180051
Li, W., Zhang, X., & Zhao, P. (2022). AI motion tracking for improving student motor accuracy. Computers in Human Behavior, 134, 107321. https://doi.org/10.1016/j.chb.2022.107321
Mahendra, R., & Fitriani, H. (2024). Integrating motion sensors for data-driven sports education. International Journal of Physical Education Technology, 15(1), 33–48. https://doi.org/10.1080/24738721.2024.1079122
Mahmud, D., Anwar, R., & Putra, T. (2024). Technical challenges in implementing motion-based learning systems. Asian Journal of Sports Pedagogy, 15(1), 67–79. https://doi.org/10.1080/28194323.2024.1180079
Miles, M. B., Huberman, A. M., & Saldaña, J. (2020). Qualitative data analysis: A methods sourcebook (4th ed.). Thousand Oaks, CA: SAGE Publications. https://doi.org/10.4135/9781544374096
Nurdin, M., Saputra, R., & Arifin, M. (2023). Digital readiness of teachers in implementing AI-based physical education. Journal of Physical Education and Innovation, 12(4), 97–111. https://doi.org/10.1080/28194323.2023.1180045
Park, Y., & Kim, J. (2023). AI-based pose estimation in physical education contexts: Accuracy and student engagement. Frontiers in Sports Science, 9(1), 101–117. https://doi.org/10.3389/fspor.2023.119045
Raharjo, H., & Hidayat, M. (2024). Data-driven physical education: Opportunities and challenges in Indonesian schools. Journal of Education and Sports Technology, 16(2), 48–63. https://doi.org/10.1080/23969415.2024.1180225
Rahman, F., & Yusuf, D. (2023). Visual feedback systems in AI-enhanced physical education classes. Computers & Education Advances, 17(3), 84–100. https://doi.org/10.1016/j.compedu.2023.103121
Sun, L., Huang, Y., & Wei, J. (2023). Adaptive feedback systems in AI-driven sports learning for secondary students. Frontiers in Educational Technology, 5(4), 66–82. https://doi.org/10.3389/feduc.2023.118099
Wu, L., Chen, H., & Zhang, Y. (2023). Artificial intelligence motion tracking in high school sports training. Frontiers in Human Movement Science, 5(2), 75–89. https://doi.org/10.3389/fhms.2023.119128
Zhang, L., Li, J., & Liu, H. (2024). The role of AI motion analytics in student motor performance evaluation. Frontiers in Educational Technology, 6(1), 21–38. https://doi.org/10.3389/feduc.2024.120011
Zimmerman, B. J. (2020). Self-regulated learning and academic achievement. Contemporary Educational Psychology, 60, 101832. https://doi.org/10.1016/j.cedpsych.2020.101832
DOI: https://doi.org/10.56842/pior.v4i1.734
Refbacks
- There are currently no refbacks.